Edexcel - Foundation

Geometry and measures

2022 GCSE Advance Information Sparx Topics \& Key Questions

We are always looking for ways to support maths teachers and students. In order to help you and your year 11s this year we've pulled together a list of key questions which may be useful to practise with your students based on the exam board topic lists.

These 88 key questions are all taken from our library of over 45,000 high-quality questions in Sparx Maths. If you are a Sparx Maths School then your students can use the Topic Codes provided to search the full content library directly within the independent learning section of Sparx Maths to help target their revision.

Please note this is not an exhaustive topic guide it is simply designed to help you pull together some key questions to use to check for understanding in lessons, starters, or as worksheets with your learners.

Geometry and measures	Topics	Sparx Topic Codes
Shape	Triangle properties	U121
	Quadrilaterals	U121
	Polygons	U121
	Triangular prism	U719
	Circles	U767, U604, U950
	Parallel and perpendicular lines	U121
	Reflection	U799
	Transformations	U196, U799, U696, U519, U766
	Plan and elevation	U743
Angles	Angles in a triangle	U628
	Vertically opposite angles	U730
	Angle properties of parallel lines	U826
	Angles in a polygon	U427
	Bearings	U525, U107
Length, area, and volume	Area of a rectangle	U993
	Area of a triangle	U945, U343
	Area of a trapezium	U265, U343

Geometry and measures	Topics	Sparx Topic Codes
Length, area, and volume	Volume of a cube	U786
	$\underline{\text { Volume of a cylinder }}$	U915
Pythagoras's Theorem and	Pythagoras's Theorem	U385
Trigonometry	Exact trigonometric	U627
	$\underline{\text { values }}$	

Shape - Triangle properties

Line and shape properties

a) Which two line segments are parallel to each other?
b) Which two line segments are equal lengths?
c) How many line segments are perpendicular to another line segment?

Not drawn accurately

Which of these is a right-angled triangle?

What is the mathematical name for each of the triangles below?

Match up the polygons shown below to their names.

Pentagon
Nonagon
Hexagon
Octagon
Heptagon

Match each shape below with its mathematical name.

Rhombus

Square

Rectangle

Parallelogram

Which shape below is a trapezium?

A type of quadrilateral has four equal-length sides and four right angles.
What is the mathematical name for this quadrilateral?

Shape - Quadrilaterals

a) Which two line segments are parallel to each other?
b) Which two line segments are equal lengths?
c) How many line segments are perpendicular to another line segment?

Not drawn accurately

Which of these is a right-angled triangle?

What is the mathematical name for each of the triangles below?

Match up the polygons shown below to their names.

Pentagon
Nonagon
Hexagon
Octagon
Heptagon

Match each shape below with its mathematical name.

Rhombus

Square

Rectangle
Parallelogram

Which shape below is a trapezium?

A type of quadrilateral has four equal-length sides and four right angles.
What is the mathematical name for this quadrilateral?

Shape - Polygons

a) Which two line segments are parallel to each other?
b) Which two line segments are equal lengths?
c) How many line segments are perpendicular to another line segment?

Not drawn accurately

Which of these is a right-angled triangle?

What is the mathematical name for each of the triangles below?

Match up the polygons shown below to their names.

Pentagon
Nonagon
Hexagon
Octagon
Heptagon

Match each shape below with its mathematical name.

Rhombus

Square

Rectangle
Parallelogram

Which shape below is a trapezium?

A type of quadrilateral has four equal-length sides and four right angles.
What is the mathematical name for this quadrilateral?

Shape - Triangular prism

What is the mathematical name for each shape?

a) What is the mathematical name of the 3D shape below?
b) How many faces does it have?

Shape - Circles

Match each definition below with the part of a circle that it describes.
A straight line between two points on the
edge of a circle that goes through the centre

of the circle | Circumference |
| :--- |
| b) The distance around the edge of a circle |
| Radius |
| c) A straight line from the centre of a circle to a |
| point on the edge of the circle |

From the diagram below, choose the correct letter for each the following parts of a circle:
a) a major arc
b) a minor sector
c) a major segment

Work out the circumference of this circle.

Give your answer in terms of π.

Not drawn accurately

circumference $=68 \pi \mathrm{~mm}$

Not drawn accurately

The radius of the circle below is 27 mm .
Calculate the area of the circle.
Give your answer in mm^{2} to 1 d.p.

Not drawn accurately

A circle has a diameter of 18 mm .
Work out the area of this circle.

Give your answer in terms of π.

Shape - Parallel and perpendicular lines

a) Which two line segments are parallel to each other?
b) Which two line segments are equal lengths?
c) How many line segments are perpendicular to another line segment?

Not drawn accurately

Which of these is a right-angled triangle?

What is the mathematical name for each of the triangles below?

Match up the polygons shown below to their names.

Pentagon
Nonagon
Hexagon
Octagon
Heptagon

Match each shape below with its mathematical name.

Rhombus

Square

Rectangle
Parallelogram

Which shape below is a trapezium?

A type of quadrilateral has four equal-length sides and four right angles.
What is the mathematical name for this quadrilateral?

Shape - Reflection

Reflection

Copy and complete the sentence below.

Shape B is a reflection of shape A in the line with equation \square

The triangle shown below is reflected in the line $x=6$.
Which letter marks the reflection of vertex T ?

Shape - Transformations

Describe the translation from shape F to shape G as a vector.

$\mathrm{J}^{〔} \mathrm{~K}^{〔} \mathrm{~L}^{‘} \mathrm{M}^{\natural}$ is a translation of JKLM by vector $\binom{-6}{2}$.
a) What are the coordinates of $\mathrm{K}^{\text {' }}$?
b) What are the coordinates of $\mathrm{M}^{\text {' }}$?

Copy and complete the sentence below.

Shape B is a reflection of shape A in the line with equation \square

The triangle shown below is reflected in the line $x=6$.
Which letter marks the reflection of vertex T ?

Shape G is rotated clockwise to get shape H .
What is the angle of rotation?

					G				
				\mathbf{H}					

Shape A has been rotated through 90° to get to shape B.
In which direction has it been rotated?

The shape below is enlarged by a scale factor of 3 .
Three sides of the enlargement are shown.
Which letter marks the position of the missing vertex?

Which diagram shows an enlargement of triangle T with a scale factor of 3 and the centre of enlargement at the cross?

Shape Y is an enlargement of shape X with centre $(2,-2)$.
What is the scale factor of the enlargement?

Complete the sentence below to fully describe the enlargement of shape A to shape B.

Enlargement with a scale factor of \square and centre \square
\square

Sparx Maths

Combining transformations

For each diagram below, select the type of transformation that maps triangle X onto triangle Y.

Enlargement

Rotation

Select all of the shapes below which are rotations of shape X .

Shape - Plan and elevation

Plans and elevations

The plan, front elevation and side elevation of a cuboid are drawn on the centimetre square grid below using the scale of 1 cm to 1 m .

What are the height, width and depth of the cuboid in metres?

Angles - Angles in a triangle

Angles in triangles

What is the size of angle w ? Give your answer in degrees $\left({ }^{\circ}\right)$.

Not drawn accurately

Angles - Vertically opposite angles

Not drawn accurately

Sparx Maths

Angles - Angle properties of parallel lines

Angles on parallel lines

Mohammed is trying to find angle h.
He finds angle g first and then he finds angle h from angle g.
a) Which angle fact does he use to find angle g ?
b) Which angle fact does he then use to find angle h ?

Not drawn accurately

Give the fact that connects the two angles labelled below.
Use this fact to find the value of f in degrees $\left({ }^{\circ}\right)$.

Not drawn accurately

Angles - Angles in a polygon

Angles in polygons

If $a+b+c+d+e=576^{\circ}$, find the value of angle f. Give your answer in degrees ${ }^{\circ}$).

Not drawn accurately

An irregular pentagon is shown below.
Calculate the size of the angle marked n.
Give your answer in degrees $\left({ }^{\circ}\right)$.

Not drawn accurately

In this regular hexagon, all of the exterior angles marked t are the same size.

Find the value of t.
Give your answer in degrees $\left({ }^{\circ}\right)$.

Sparx Maths

Angles - Bearings

Measuring and drawing bearings

 U525For each of the examples below, identify the bearing of B from A .
(Hint: bearings are written with three digits.)
a)

Not drawn accurately

Work out the bearing of B from A .

The steps for drawing a bearing of 075° from a point, X , are shown below. Put the steps in the correct order.

Work out the bearing of B from A .

Not drawn accurately

Calculate the bearing of Y from X .

Not drawn accurately

Length, area, and volume - Area of a rectangle

Length, area, and volume - Area of a triangle

What is the area of the triangle below?

Not to scale

Work out the area of this parallelogram.

Not drawn accurately

Calculate the area of the trapezium.

Not to scale

Calculate the area of the shaded section of this shape.

Area of a trapezium $=\frac{\text { sum of parallel sides }}{2} \times$ height

What is the height of this trapezium?

Not to scale

The parallelogram and the triangle below have the same area.
What number should go in the box?

Length, area, and volume - Area of a trapezium

Work out the area of this parallelogram.

Not drawn accurately

Calculate the area of the trapezium.

Not to scale

Calculate the area of the shaded section of this shape.

Area of a trapezium $=\frac{\text { sum of parallel sides }}{2} \times$ height

What is the height of this trapezium?

Not to scale

The parallelogram and the triangle below have the same area.
What number should go in the box?

Length, area, and volume - Volume of a cube

The pizza box below is a cuboid. Calculate its volume.
Remember to give the correct units.

Not drawn accurately

The cuboid below has a height of 34 mm and a width of 6 mm . It has a volume of $3468 \mathrm{~mm}^{3}$.

What is the length of the cuboid?
Remember to give the correct units, and give any decimal answers to 1 d.p.

Not drawn accurately

Length, area, and volume - Volume of a cylinder

Finding the volume of cylinders

Work out the volume of the cylindrical tin of paint below.

Give your answer in terms of π.

Not drawn accurately

Pythagoras's Theorem and Trigonometry - Pythagoras's Theorem

Using Pythagoras` theorem in 2D

Using Pythagoras` theorem, calculate the length of the hypotenuse in this right-angled triangle.
Give your answer in centimetres (cm) to 1 d.p.

Not drawn accurately

Using Pythagoras theorem, calculate the length of YZ.
Give your answer in centimetres (cm) to 1 d.p.

Not drawn accurately

Anaya has a rectangular plank of wood that is 32 inches long. She creates a ramp by resting the plank against a wall with a height of 15 inches, as shown.

Using Pythagoras' theorem, work out the horizontal distance between the wall and the bottom of the ramp.

Give your answer in inches to 1 d.p.

Not drawn accurately

Pythagoras's Theorem and Trigonometry - Exact trigonometric values

Copy and complete each of the equalities below using the options given.

$$
\begin{aligned}
& \text { a) } \left.\cos 30^{\circ}=\square \frac{\sqrt{3}}{2} \pm \frac{1}{2} \right\rvert\, \frac{1}{\sqrt{2}} \\
& \text { b) } \cos 45^{\circ}=\square \frac{\sqrt{3}}{2}\left\lfloor\frac{1}{2} \left\lvert\, \frac{1}{\sqrt{2}}\right.\right. \\
& \text { c) } \left.\cos 60^{\circ}=\square \frac{\sqrt{3}}{2} \quad \frac{1}{2} \right\rvert\, \frac{1}{\sqrt{2}}
\end{aligned}
$$

Copy and complete each of the equalities below using the options given.

$$
\begin{aligned}
& \text { a) } \cos ^{-1}\left(\frac{1}{2}\right)=\square 630^{\circ} 45^{\circ} 60^{\circ} \\
& \text { b) } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\square 30^{\circ} 45^{\circ} 60^{\circ} \\
& \text { c) } \tan ^{-1}(\sqrt{3})=\square 30^{\circ} 45^{\circ} 60^{\circ}
\end{aligned}
$$

