AQA Biology GCSE Student calculation sheet

Name.....

Class

Date.....

Constructing line graphs

Specification references

- Mathematical requirement:
 - 2b Find arithmetic means
 - 4a Translate information between graphical and numeric form
 - 4c Plot two variables from experimental or other data

Aims

It is often easier to see patterns in data when the information is displayed on a graph rather than in a table.

In this activity you will learn how to construct line graphs. Line graphs are normally used to represent continuous data – data where the independent variable can take any value within a range of data.

Learning outcomes

After completing this activity, you should be able to:

- translate information between graphical and numeric form
- construct line graphs.

Background

When studying the effect of temperature on an enzyme-controlled reaction, the data produced are continuous. Although you would only choose a few temperatures to investigate, there is a large variety that you could choose from.

How to construct a line graph:

1 Label the *x*-axis with the independent variable and the *y*-axis with the dependent variable. The units of measurement should be added after the description of the variable.

© Oxford University Press 2016 www.oxfordsecondary.co.uk/acknowledgements

AQA Biology **GCSE** Student calculation sheet

B3.1

Date.....

Name..... Class

2 Choose a sensible scale for each axis – your scale should be evenly spaced on your graph paper so that your graph fills the whole page.

Tip – The points plotted should occupy at least half of the graph paper in each direction (x and y).

Tip – Each large square on your paper should represent a simple value, for example, 1, 2, 5, or 10.

3 Plot your data values neatly and accurately – use a ruler to measure accurately across from the *y*-axis and up from the *x*-axis to find the position of your data value. Each data value should be plotted neatly as a little cross – do not use dots.

Tip – Make sure you use a sharp pencil to mark your data values. The crosses should be small, with the centre of the cross at the exact point given by your data.

4 Where appropriate, draw a line of best fit. When drawing a line of best fit, do not join your crosses up 'dot-to-dot'; instead, a smooth line should be drawn through the points. For further guidance on drawling lines of best fit refer to Chapter 3 – Student calculation sheet *Curved lines of best fit.*

Worked example

A student collected data on the time taken for hydrogen peroxide to decompose in the presence of a biological catalyst.

рН	Time to produce 1 cm ³ O ₂ gas in s
4.5	8
5.0	14
5.5	20
6.0	26
6.5	32

To plot this data as a graph, first label the axes. The *x*-axis would be 'pH' and the *y*-axis 'time in s'

Choose a scale which will allow you to plot the points so that they occupy at least half of the graph paper. The *x*-axis in this case may cover the pH values 4–7.

Tip – Remember to state units when labelling axes.

Tip – Scales do not need to start at zero. If starting a scale using a different value, ensure the origin is clearly labelled with the appropriate value.

Plot the points. Where repeats have been used, plot the arithmetic mean value.

Join the points or add a line of best fit, as appropriate.

AQA Biology **GCSE** Student calculation sheet

Name.....

Class

Date.....

The following graph shows how your graph should be plotted.

Questions

- 1 A student investigates how the temperature of an enzyme affects the time taken for starch to be digested into glucose. The student collates her data, and plots a graph of the data.
 - **a** State why a line graph would be an appropriate choice of graph for this investigation.

.....(1 mark)

b State an appropriate label for the *x*-axis and *y*-axis.

2 The following set of data shows the link between the height of a plant and its mass:

Height of plant in cm	Mass of plant in g		
2	8		
4	16		
7	28		
11	40		
16	58		

© Oxford University Press 2016 www.oxfordsecondary.co.uk/acknowledgements

b Create an appropriate graph to display these data.

(4 marks)

c State the conclusion that the student can draw from this graph.

© Oxford University Press 2016 <u>www.oxfordsecondary.co.uk/acknowledgements</u>

neet	B3.1	
GCSE Student calculation sheet		
Class	Date	
s down lactose into H of the lactose		
s F g	down lactose into f of the lactose of glucose through	

this digestion process.

4 a Suggest two variables the scientist should control to enable valid data is generated.

The scientist collected the following results:

nU	Time in s				Rate of
рп	Repeat 1	Repeat 2	Repeat 3	Mean	reaction (s ⁻¹)
1	NR	NR	NR	NR	0.000
4	89	88	93		
5	28	31	31		
7	16	16	13		
9	60	57	63		
10	248	238	234		
13	NR	NR	NR	NR	0.000

NR = no result

b Calculate the mean reaction time for each lactose solution pH value.

c Use the following equation to calculate the mean rate of reaction for each lactose pH value: rate of reaction = 1/time
d Plot a graph of pH against rate of reaction.
e Using your graph, identify the optimum pH for the enzyme lactase.
(1 mark)

© Oxford University Press 2016 www.oxfordsecondary.co.uk/acknowledgements

A	QA Biology		
GCSE Student calculation sheet			B3.1
Name	9	Class	Date
f	Suggest one improvement the scientist could mak identify the optimum pH of lactase more accuratel	e to the experiment to y.	