Specification references

- Mathematical requirement:

2 b - Find arithmetic means
4 a - Translate information between graphical and numeric form
4 c - Plot two variables from experimental or other data

Abstract

Aims It is often easier to see patterns in data when the information is displayed on a graph rather than in a table. In this activity you will learn how to construct line graphs. Line graphs are normally used to represent continuous data - data where the independent variable can take any value within a range of data.

Learning outcomes

After completing this activity, you should be able to:

- translate information between graphical and numeric form
- construct line graphs.

Background

When studying the effect of temperature on an enzyme-controlled reaction, the data produced are continuous. Although you would only choose a few temperatures to investigate, there is a large variety that you could choose from.

How to construct a line graph:
1 Label the x-axis with the independent variable and the y-axis with the dependent variable. The units of measurement should be added after the description of the variable.

AQA Biology
 GCSE Student calculation sheet

Name \qquad Class \qquad Date

2 Choose a sensible scale for each axis - your scale should be evenly spaced on your graph paper so that your graph fills the whole page.
Tip - The points plotted should occupy at least half of the graph paper in each direction (x and y).
Tip - Each large square on your paper should represent a simple value, for example, 1, 2, 5, or 10.
3 Plot your data values neatly and accurately - use a ruler to measure accurately across from the y-axis and up from the x-axis to find the position of your data value. Each data value should be plotted neatly as a little cross - do not use dots.
Tip - Make sure you use a sharp pencil to mark your data values. The crosses should be small, with the centre of the cross at the exact point given by your data.
4 Where appropriate, draw a line of best fit. When drawing a line of best fit, do not join your crosses up 'dot-to-dot'; instead, a smooth line should be drawn through the points. For further guidance on drawling lines of best fit refer to Chapter 3 - Student calculation sheet Curved lines of best fit.

Worked example

A student collected data on the time taken for hydrogen peroxide to decompose in the presence of a biological catalyst.

pH	Time to produce $\mathbf{1} \mathrm{cm}^{3} \mathbf{O}_{2}$ gas in s
4.5	8
5.0	14
5.5	20
6.0	26
6.5	32

To plot this data as a graph, first label the axes. The x-axis would be ' pH ' and the y-axis 'time in s'
Choose a scale which will allow you to plot the points so that they occupy at least half of the graph paper. The x-axis in this case may cover the pH values $4-7$.

Tip - Remember to state units when labelling axes.
Tip - Scales do not need to start at zero. If starting a scale using a different value, ensure the origin is clearly labelled with the appropriate value.
Plot the points. Where repeats have been used, plot the arithmetic mean value.
Join the points or add a line of best fit, as appropriate.

AQA Biology

GCSE Student calculation sheet

Name \qquad Class \qquad Date

The following graph shows how your graph should be plotted.

Questions

1 A student investigates how the temperature of an enzyme affects the time taken for starch to be digested into glucose. The student collates her data, and plots a graph of the data.
a State why a line graph would be an appropriate choice of graph for this investigation.
\qquad
b State an appropriate label for the x-axis and y-axis.
\qquad
\qquad
2 The following set of data shows the link between the height of a plant and its mass:

Height of plant in cm	Mass of plant in g
2	8
4	16
7	28
11	40
16	58

AQA Biology

GCSE Student calculation sheet
Name \qquad Class \qquad Date

The data were plotted graphically, as follows:

a There are three errors in the student's graph. Label the errors on the graph.
b State the corrections which should be made to ensure the graph is correct.
\qquad
\qquad
\qquad
3 Steven collected data on how the enzyme concentration affects the rate of an enzyme-controlled reaction. His results are below:

Relative enzyme concentration	Repeat 1	Repeat 2	Mean
	Rate of reaction \mathbf{s}^{-1}		
0.0	0.00	0.00	
0.5	0.06	0.04	
1.0	0.12	0.08	
1.5	0.15	0.15	
2.0	0.22	0.18	

a Complete the table by calculating the mean rate of reaction for each result.
b Create an appropriate graph to display these data.
c State the conclusion that the student can draw from this graph.
\qquad
\qquad

AQA Biology

GCSE Student calculation sheet

Name \qquad Class \qquad Date

Exam-style question

Lactose is a sugar found in milk. The enzyme lactase breaks down lactose into the simple sugar glucose. A scientist investigated how the pH of the lactose solution affects the time taken (in seconds) to produce 30 mg of glucose through this digestion process.
4 a Suggest two variables the scientist should control to enable valid data is generated.
\qquad
\qquad

The scientist collected the following results:

pH	Time in s				
	Repeat 1	Repeat 2	Repeat 3	Mean	0.000
1	NR	NR	NR	NR	
4	89	88	93		
5	28	31	31		
7	16	16	13		
9	60	57	63		
10	248	238	234		0.000
13	NR	NR	NR	NR	

NR = no result
b Calculate the mean reaction time for each lactose solution pH value.
\qquad
\qquad
c Use the following equation to calculate the mean rate of reaction for each lactose pH value:
rate of reaction $=\frac{1}{\text { time }}$
\qquad
\qquad
d Plot a graph of pH against rate of reaction.
(4 marks)
e Using your graph, identify the optimum pH for the enzyme lactase.
(1 mark)

AQA Biology
 GCSE Student calculation sheet

Name \qquad Class \qquad Date
f Suggest one improvement the scientist could make to the experiment to identify the optimum pH of lactase more accurately.
\qquad
\qquad

